Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Clin Chem ; 68(1): 143-152, 2021 12 30.
Article in English | MEDLINE | ID: covidwho-20243230

ABSTRACT

BACKGROUND: The urgent need for massively scaled clinical testing for SARS-CoV-2, along with global shortages of critical reagents and supplies, has necessitated development of streamlined laboratory testing protocols. Conventional nucleic acid testing for SARS-CoV-2 involves collection of a clinical specimen with a nasopharyngeal swab in transport medium, nucleic acid extraction, and quantitative reverse-transcription PCR (RT-qPCR). As testing has scaled across the world, the global supply chain has buckled, rendering testing reagents and materials scarce. To address shortages, we developed SwabExpress, an end-to-end protocol developed to employ mass produced anterior nares swabs and bypass the requirement for transport media and nucleic acid extraction. METHODS: We evaluated anterior nares swabs, transported dry and eluted in low-TE buffer as a direct-to-RT-qPCR alternative to extraction-dependent viral transport media. We validated our protocol of using heat treatment for viral inactivation and added a proteinase K digestion step to reduce amplification interference. We tested this protocol across archived and prospectively collected swab specimens to fine-tune test performance. RESULTS: After optimization, SwabExpress has a low limit of detection at 2-4 molecules/µL, 100% sensitivity, and 99.4% specificity when compared side by side with a traditional RT-qPCR protocol employing extraction. On real-world specimens, SwabExpress outperforms an automated extraction system while simultaneously reducing cost and hands-on time. CONCLUSION: SwabExpress is a simplified workflow that facilitates scaled testing for COVID-19 without sacrificing test performance. It may serve as a template for the simplification of PCR-based clinical laboratory tests, particularly in times of critical shortages during pandemics.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19 , COVID-19/diagnosis , Clinical Laboratory Techniques , Humans , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Specimen Handling
2.
Emerg Infect Dis ; 29(2): 242-251, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2198462

ABSTRACT

Genomic data provides useful information for public health practice, particularly when combined with epidemiologic data. However, sampling bias is a concern because inferences from nonrandom data can be misleading. In March 2021, the Washington State Department of Health, USA, partnered with submitting and sequencing laboratories to establish sentinel surveillance for SARS-CoV-2 genomic data. We analyzed available genomic and epidemiologic data during presentinel and sentinel periods to assess representativeness and timeliness of availability. Genomic data during the presentinel period was largely unrepresentative of all COVID-19 cases. Data available during the sentinel period improved representativeness for age, death from COVID-19, outbreak association, long-term care facility-affiliated status, and geographic coverage; timeliness of data availability and captured viral diversity also improved. Hospitalized cases were underrepresented, indicating a need to increase inpatient sampling. Our analysis emphasizes the need to understand and quantify sampling bias in phylogenetic studies and continue evaluation and improvement of public health surveillance systems.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Washington/epidemiology , Sentinel Surveillance , Phylogeny , Genomics
3.
JAMA Netw Open ; 5(12): e2245861, 2022 12 01.
Article in English | MEDLINE | ID: covidwho-2157641

ABSTRACT

Importance: Few US studies have reexamined risk factors for SARS-CoV-2 positivity in the context of widespread vaccination and new variants or considered risk factors for cocirculating endemic viruses, such as rhinovirus. Objectives: To evaluate how risk factors and symptoms associated with SARS-CoV-2 test positivity changed over the course of the pandemic and to compare these with the risk factors associated with rhinovirus test positivity. Design, Setting, and Participants: This case-control study used a test-negative design with multivariable logistic regression to assess associations between SARS-CoV-2 and rhinovirus test positivity and self-reported demographic and symptom variables over a 25-month period. The study was conducted among symptomatic individuals of all ages enrolled in a cross-sectional community surveillance study in King County, Washington, from June 2020 to July 2022. Exposures: Self-reported data for 15 demographic and health behavior variables and 16 symptoms. Main Outcomes and Measures: Reverse transcription-polymerase chain reaction-confirmed SARS-CoV-2 or rhinovirus infection. Results: Analyses included data from 23 498 individuals. The median (IQR) age of participants was 34.33 (22.42-45.08) years, 13 878 (59.06%) were female, 4018 (17.10%) identified as Asian, 654 (2.78%) identified as Black, and 2193 (9.33%) identified as Hispanic. Close contact with an individual with SARS-CoV-2 (adjusted odds ratio [aOR], 3.89; 95% CI, 3.34-4.57) and loss of smell or taste (aOR, 3.49; 95% CI, 2.77-4.41) were the variables most associated with SARS-CoV-2 test positivity, but both attenuated during the Omicron period. Contact with a vaccinated individual with SARS-CoV-2 (aOR, 2.03; 95% CI, 1.56-2.79) was associated with lower odds of testing positive than contact with an unvaccinated individual with SARS-CoV-2 (aOR, 4.04; 95% CI, 2.39-7.23). Sore throat was associated with Omicron infection (aOR, 2.27; 95% CI, 1.68-3.20) but not Delta infection. Vaccine effectiveness for participants fully vaccinated with a booster dose was 93% (95% CI, 73%-100%) for Delta, but not significant for Omicron. Variables associated with rhinovirus test positivity included being younger than 12 years (aOR, 3.92; 95% CI, 3.42-4.51) and experiencing a runny or stuffy nose (aOR, 4.58; 95% CI, 4.07-5.21). Black race, residing in south King County, and households with 5 or more people were significantly associated with both SARS-CoV-2 and rhinovirus test positivity. Conclusions and Relevance: In this case-control study of 23 498 symptomatic individuals, estimated risk factors and symptoms associated with SARS-CoV-2 infection changed over time. There was a shift in reported symptoms between the Delta and Omicron variants as well as reductions in the protection provided by vaccines. Racial and sociodemographic disparities persisted in the third year of SARS-CoV-2 circulation and were also present in rhinovirus infection. Trends in testing behavior and availability may influence these results.


Subject(s)
COVID-19 , SARS-CoV-2 , Female , Humans , Adult , Middle Aged , Male , Rhinovirus , Case-Control Studies , COVID-19/diagnosis , COVID-19/epidemiology , Cross-Sectional Studies , Risk Factors
5.
Nat Commun ; 13(1): 5240, 2022 09 06.
Article in English | MEDLINE | ID: covidwho-2008277

ABSTRACT

Novel variants continue to emerge in the SARS-CoV-2 pandemic. University testing programs may provide timely epidemiologic and genomic surveillance data to inform public health responses. We conducted testing from September 2021 to February 2022 in a university population under vaccination and indoor mask mandates. A total of 3,048 of 24,393 individuals tested positive for SARS-CoV-2 by RT-PCR; whole genome sequencing identified 209 Delta and 1,730 Omicron genomes of the 1,939 total sequenced. Compared to Delta, Omicron had a shorter median serial interval between genetically identical, symptomatic infections within households (2 versus 6 days, P = 0.021). Omicron also demonstrated a greater peak reproductive number (2.4 versus 1.8), and a 1.07 (95% confidence interval: 0.58, 1.57; P < 0.0001) higher mean cycle threshold value. Despite near universal vaccination and stringent mitigation measures, Omicron rapidly displaced the Delta variant to become the predominant viral strain and led to a surge in cases in a university population.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Genome, Viral/genetics , Genomics , Humans , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Universities
6.
Nat Commun ; 13(1): 4186, 2022 07 20.
Article in English | MEDLINE | ID: covidwho-1947343

ABSTRACT

As shown during the SARS-CoV-2 pandemic, phylogenetic and phylodynamic methods are essential tools to study the spread and evolution of pathogens. One of the central assumptions of these methods is that the shared history of pathogens isolated from different hosts can be described by a branching phylogenetic tree. Recombination breaks this assumption. This makes it problematic to apply phylogenetic methods to study recombining pathogens, including, for example, coronaviruses. Here, we introduce a Markov chain Monte Carlo approach that allows inference of recombination networks from genetic sequence data under a template switching model of recombination. Using this method, we first show that recombination is extremely common in the evolutionary history of SARS-like coronaviruses. We then show how recombination rates across the genome of the human seasonal coronaviruses 229E, OC43 and NL63 vary with rates of adaptation. This suggests that recombination could be beneficial to fitness of human seasonal coronaviruses. Additionally, this work sets the stage for Bayesian phylogenetic tracking of the spread and evolution of SARS-CoV-2 in the future, even as recombinant viruses become prevalent.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Bayes Theorem , Humans , Phylogeny , Recombination, Genetic , SARS-CoV-2/genetics
7.
Clin Infect Dis ; 75(1): e536-e544, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1886386

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic is dominated by variant viruses; the resulting impact on disease severity remains unclear. Using a retrospective cohort study, we assessed the hospitalization risk following infection with 7 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. METHODS: Our study includes individuals with positive SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR) in the Washington Disease Reporting System with available viral genome data, from 1 December 2020 to 14 January 2022. The analysis was restricted to cases with specimens collected through sentinel surveillance. Using a Cox proportional hazards model with mixed effects, we estimated hazard ratios (HR) for hospitalization risk following infection with a variant, adjusting for age, sex, calendar week, and vaccination. RESULTS: In total, 58 848 cases were sequenced through sentinel surveillance, of which 1705 (2.9%) were hospitalized due to COVID-19. Higher hospitalization risk was found for infections with Gamma (HR 3.20, 95% confidence interval [CI] 2.40-4.26), Beta (HR 2.85, 95% CI 1.56-5.23), Delta (HR 2.28 95% CI 1.56-3.34), or Alpha (HR 1.64, 95% CI 1.29-2.07) compared to infections with ancestral lineages; Omicron (HR 0.92, 95% CI .56-1.52) showed no significant difference in risk. Following Alpha, Gamma, or Delta infection, unvaccinated patients show higher hospitalization risk, while vaccinated patients show no significant difference in risk, both compared to unvaccinated, ancestral lineage cases. Hospitalization risk following Omicron infection is lower with vaccination. CONCLUSIONS: Infection with Alpha, Gamma, or Delta results in a higher hospitalization risk, with vaccination attenuating that risk. Our findings support hospital preparedness, vaccination, and genomic surveillance.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Hospitalization , Humans , Retrospective Studies , SARS-CoV-2/genetics , Washington/epidemiology
8.
Cell Host Microbe ; 30(4): 545-555.e4, 2022 04 13.
Article in English | MEDLINE | ID: covidwho-1814244

ABSTRACT

The SARS-CoV-2 pandemic has resulted in numerous virus variants, some of which have altered receptor-binding or antigenic phenotypes. Here, we quantify the degree to which adaptive evolution is driving the accumulation of mutations across the genome. We correlate clade growth with mutation accumulation, compare rates of nonsynonymous to synonymous divergence, assess temporal clustering of mutations, and evaluate the evolutionary success of individual mutations. We find that spike S1 is the focus of adaptive evolution but also identify positively selected mutations in other proteins (notably Nsp6) that are sculpting the evolutionary trajectory of SARS-CoV-2. Adaptive changes in S1 accumulated rapidly, resulting in a remarkably high ratio of nonsynonymous to synonymous divergence that is 2.5× greater than that observed in influenza hemagglutinin HA1 at the beginning of the 2009 H1N1 pandemic. These findings uncover a high degree of adaptation in S1 and suggest that SARS-CoV-2 might undergo antigenic drift.


Subject(s)
SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19/virology , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
9.
Cell host & microbe ; 2022.
Article in English | EuropePMC | ID: covidwho-1755837

ABSTRACT

The SARS-CoV-2 pandemic has resulted in numerous virus variants, some of which have altered receptor-binding or antigenic phenotypes. Here, we quantify the degree to which adaptive evolution is driving the accumulation of mutations across the genome. We correlate clade growth with mutation accumulation, compare rates of nonsynonymous to synonymous divergence, assess temporal clustering of mutations and evaluate the evolutionary success of individual mutations. We find that spike S1 is the focus of adaptive evolution, but also identify positively-selected mutations in other genes (notably Nsp6) that are sculpting the evolutionary trajectory of SARS-CoV-2. Adaptive changes in S1 accumulated rapidly, resulting in a remarkably high ratio of nonsynonymous to synonymous divergence that is 2.5X greater than that observed in influenza hemagglutinin HA1 at the beginning of the 2009 H1N1 pandemic. These findings uncover a high degree of adaptation in S1 and suggest that SARS-CoV-2 may undergo antigenic drift. Graphical

10.
Clin Infect Dis ; 73(11): e4411-e4418, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1561635

ABSTRACT

BACKGROUND: Noninfluenza respiratory viruses are responsible for a substantial burden of disease in the United States. Household transmission is thought to contribute significantly to subsequent transmission through the broader community. In the context of the coronavirus disease 2019 (COVID-19) pandemic, contactless surveillance methods are of particular importance. METHODS: From November 2019 to April 2020, 303 households in the Seattle area were remotely monitored in a prospective longitudinal study for symptoms of respiratory viral illness. Enrolled participants reported weekly symptoms and submitted respiratory samples by mail in the event of an acute respiratory illness (ARI). Specimens were tested for 14 viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), using reverse-transcription polymerase chain reaction. Participants completed all study procedures at home without physical contact with research staff. RESULTS: In total, 1171 unique participants in 303 households were monitored for ARI. Of participating households, 128 (42%) included a child aged <5 years and 202 (67%) included a child aged 5-12 years. Of the 678 swabs collected during the surveillance period, 237 (35%) tested positive for 1 or more noninfluenza respiratory viruses. Rhinovirus, common human coronaviruses, and respiratory syncytial virus were the most common. Four cases of SARS-CoV-2 were detected in 3 households. CONCLUSIONS: This study highlights the circulation of respiratory viruses within households during the winter months during the emergence of the SARS-CoV-2 pandemic. Contactless methods of recruitment, enrollment, and sample collection were utilized throughout this study and demonstrate the feasibility of home-based, remote monitoring for respiratory infections.


Subject(s)
COVID-19 , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Viruses , Child , Humans , Longitudinal Studies , Prospective Studies , Respiratory Tract Infections/epidemiology , SARS-CoV-2
11.
Open Forum Infect Dis ; 8(11): ofab464, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1528169

ABSTRACT

BACKGROUND: We aimed to evaluate a testing program to facilitate control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission at a large university and measure spread in the university community using viral genome sequencing. METHODS: Our prospective longitudinal study used remote contactless enrollment, daily mobile symptom and exposure tracking, and self-swab sample collection. Individuals were tested if the participant was exposed to a known SARS-CoV-2-infected person, developed new symptoms, or reported high-risk behavior (such as attending an indoor gathering without masking or social distancing), if a member of a group experiencing an outbreak, or at enrollment. Study participants included students, staff, and faculty at an urban public university during the Autumn quarter of 2020. RESULTS: We enrolled 16 476 individuals, performed 29 783 SARS-CoV-2 tests, and detected 236 infections. Seventy-five percent of positive cases reported at least 1 of the following: symptoms (60.8%), exposure (34.7%), or high-risk behaviors (21.5%). Greek community affiliation was the strongest risk factor for testing positive, and molecular epidemiology results suggest that specific large gatherings were responsible for several outbreaks. CONCLUSIONS: A testing program focused on individuals with symptoms and unvaccinated persons who participate in large campus gatherings may be effective as part of a comprehensive university-wide mitigation strategy to control the spread of SARS-CoV-2.

12.
Nature ; 597(7878): 703-708, 2021 09.
Article in English | MEDLINE | ID: covidwho-1442788

ABSTRACT

SARS-CoV-2 infections have surged across the globe in recent months, concomitant with considerable viral evolution1-3. Extensive mutations in the spike protein may threaten the efficacy of vaccines and therapeutic monoclonal antibodies4. Two signature spike mutations of concern are E484K, which has a crucial role in the loss of neutralizing activity of antibodies, and N501Y, a driver of rapid worldwide transmission of the B.1.1.7 lineage. Here we report the emergence of the variant lineage B.1.526 (also known as the Iota variant5), which contains E484K, and its rise to dominance in New York City in early 2021. This variant is partially or completely resistant to two therapeutic monoclonal antibodies that are in clinical use and is less susceptible to neutralization by plasma from individuals who had recovered from SARS-CoV-2 infection or serum from vaccinated individuals, posing a modest antigenic challenge. The presence of the B.1.526 lineage has now been reported in all 50 states in the United States and in many other countries. B.1.526 rapidly replaced earlier lineages in New York, with an estimated transmission advantage of 35%. These transmission dynamics, together with the relative antibody resistance of its E484K sub-lineage, are likely to have contributed to the sharp rise and rapid spread of B.1.526. Although SARS-CoV-2 B.1.526 initially outpaced B.1.1.7 in the region, its growth subsequently slowed concurrently with the rise of B.1.1.7 and ensuing variants.


Subject(s)
COVID-19/virology , SARS-CoV-2/growth & development , SARS-CoV-2/isolation & purification , Antibodies, Neutralizing/immunology , Humans , Mutation , New York/epidemiology , Phylogeny , Phylogeography , Prevalence , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , United States/epidemiology
13.
J Med Virol ; 93(10): 5931-5941, 2021 10.
Article in English | MEDLINE | ID: covidwho-1432428

ABSTRACT

Real-time epidemiological tracking of variants of concern (VOCs) can help limit the spread of more contagious forms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), such as those containing the N501Y mutation. Typically, genetic sequencing is required to be able to track VOCs in real-time. However, sequencing can take time and may not be accessible in all laboratories. Genotyping by RT-ddPCR offers an alternative to rapidly detect VOCs through discrimination of specific alleles such as N501Y, which is associated with increased transmissibility and virulence. Here we describe the first cases of the B.1.1.7 lineage of SARS-CoV-2 detected in Washington State by using a combination of reverse-transcription polymerase chain reaction (RT-PCR), RT-ddPCR, and next-generation sequencing. We initially screened 1035 samples positive for SARS-CoV-2 by our CDC-based laboratory-developed assay using ThermoFisher's multiplex RT-PCR COVID-19 assay over four weeks from late December 2020 to early January 2021. S gene target failures (SGTF) were subsequently assayed by RT-ddPCR to confirm four mutations within the S gene associated with the B.1.1.7 lineage: a deletion at amino acid (AA) 69-70 (ACATGT), deletion at AA 145, (TTA), N501Y mutation (TAT), and S982A mutation (GCA). All four targets were detected in two specimens; follow-up sequencing revealed a total of 9 mutations in the S gene and phylogenetic clustering within the B.1.1.7 lineage. Next, we continued screening samples for SGTF detecting 23 additional B.1.1.7 variants by RT-ddPCR and confirmed by sequencing. As VOCs become increasingly prevalent, molecular diagnostic tools like RT-ddPCR can be utilized to quickly, accurately, and sensitively distinguish more contagious lineages of SARS-CoV-2.


Subject(s)
COVID-19 Nucleic Acid Testing , Real-Time Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Alleles , COVID-19/diagnosis , COVID-19/epidemiology , Genotype , High-Throughput Nucleotide Sequencing , Humans , Mutation , Phylogeny , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Time Factors , Washington/epidemiology
14.
PLoS Pathog ; 17(8): e1009849, 2021 08.
Article in English | MEDLINE | ID: covidwho-1369568

ABSTRACT

The emergence of divergent SARS-CoV-2 lineages has raised concern that novel variants eliciting immune escape or the ability to displace circulating lineages could emerge within individual hosts. Though growing evidence suggests that novel variants arise during prolonged infections, most infections are acute. Understanding how efficiently variants emerge and transmit among acutely-infected hosts is therefore critical for predicting the pace of long-term SARS-CoV-2 evolution. To characterize how within-host diversity is generated and propagated, we combine extensive laboratory and bioinformatic controls with metrics of within- and between-host diversity to 133 SARS-CoV-2 genomes from acutely-infected individuals. We find that within-host diversity is low and transmission bottlenecks are narrow, with very few viruses founding most infections. Within-host variants are rarely transmitted, even among individuals within the same household, and are rarely detected along phylogenetically linked infections in the broader community. These findings suggest that most variation generated within-host is lost during transmission.


Subject(s)
COVID-19/virology , Genetic Variation , SARS-CoV-2/genetics , Acute Disease , COVID-19/transmission , Evolution, Molecular , Genome, Viral , Humans , Phylogeny , SARS-CoV-2/pathogenicity , Time Factors
16.
JAMA Pediatr ; 175(10): e212025, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1265361

ABSTRACT

Importance: The association between COVID-19 symptoms and SARS-CoV-2 viral levels in children living in the community is not well understood. Objective: To characterize symptoms of pediatric COVID-19 in the community and analyze the association between symptoms and SARS-CoV-2 RNA levels, as approximated by cycle threshold (Ct) values, in children and adults. Design, Setting, and Participants: This cross-sectional study used a respiratory virus surveillance platform in persons of all ages to detect community COVID-19 cases from March 23 to November 9, 2020. A population-based convenience sample of children younger than 18 years and adults in King County, Washington, who enrolled online for home self-collection of upper respiratory samples for SARS-CoV-2 testing were included. Exposures: Detection of SARS-CoV-2 RNA by reverse transcription-polymerase chain reaction (RT-PCR) from participant-collected samples. Main Outcomes and Measures: RT-PCR-confirmed SARS-CoV-2 infection, with Ct values stratified by age and symptoms. Results: Among 555 SARS-CoV-2-positive participants (mean [SD] age, 33.7 [20.1] years; 320 were female [57.7%]), 47 of 123 children (38.2%) were asymptomatic compared with 31 of 432 adults (7.2%). When symptomatic, fewer symptoms were reported in children compared with adults (mean [SD], 1.6 [2.0] vs 4.5 [3.1]). Symptomatic individuals had lower Ct values (which corresponded to higher viral RNA levels) than asymptomatic individuals (adjusted estimate for children, -3.0; 95% CI, -5.5 to -0.6; P = .02; adjusted estimate for adults, -2.9; 95% CI, -5.2 to -0.6; P = .01). The difference in mean Ct values was neither statistically significant between symptomatic children and symptomatic adults (adjusted estimate, -0.7; 95% CI, -2.2 to 0.9; P = .41) nor between asymptomatic children and asymptomatic adults (adjusted estimate, -0.6; 95% CI, -4.0 to 2.8; P = .74). Conclusions and Relevance: In this community-based cross-sectional study, SARS-CoV-2 RNA levels, as determined by Ct values, were significantly higher in symptomatic individuals than in asymptomatic individuals and no significant age-related differences were found. Further research is needed to understand the role of SARS-CoV-2 RNA levels and viral transmission.


Subject(s)
COVID-19/complications , COVID-19/diagnosis , RNA, Viral/metabolism , SARS-CoV-2/isolation & purification , Viral Load , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19 Nucleic Acid Testing , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Male , Middle Aged , Reverse Transcriptase Polymerase Chain Reaction , Symptom Assessment , Washington , Young Adult
18.
BMC Infect Dis ; 21(1): 335, 2021 Apr 09.
Article in English | MEDLINE | ID: covidwho-1175296

ABSTRACT

BACKGROUND: Unusually high snowfall in western Washington State in February 2019 led to widespread school and workplace closures. We assessed the impact of social distancing caused by this extreme weather event on the transmission of respiratory viruses. METHODS: Residual specimens from patients evaluated for acute respiratory illness at hospitals in the Seattle metropolitan area were screened for a panel of respiratory viruses. Transmission models were fit to each virus to estimate the magnitude reduction in transmission due to weather-related disruptions. Changes in contact rates and care-seeking were informed by data on local traffic volumes and hospital visits. RESULTS: Disruption in contact patterns reduced effective contact rates during the intervention period by 16 to 95%, and cumulative disease incidence through the remainder of the season by 3 to 9%. Incidence reductions were greatest for viruses that were peaking when the disruption occurred and least for viruses in an early epidemic phase. CONCLUSION: High-intensity, short-duration social distancing measures may substantially reduce total incidence in a respiratory virus epidemic if implemented near the epidemic peak. For SARS-CoV-2, this suggests that, even when SARS-CoV-2 spread is out of control, implementing short-term disruptions can prevent COVID-19 deaths.


Subject(s)
Epidemics/prevention & control , Physical Distancing , Respiratory Tract Infections/transmission , Respiratory Tract Infections/virology , Weather , COVID-19 , Cities , Humans , Incidence , Models, Theoretical , Retrospective Studies , Washington
19.
Ann Intern Med ; 174(1): 42-49, 2021 01.
Article in English | MEDLINE | ID: covidwho-1067965

ABSTRACT

BACKGROUND: Homeless shelters are a high-risk setting for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission because of crowding and shared hygiene facilities. OBJECTIVE: To investigate SARS-CoV-2 case counts across several adult and family homeless shelters in a major metropolitan area. DESIGN: Cross-sectional, community-based surveillance study. (ClinicalTrials.gov: NCT04141917). SETTING: 14 homeless shelters in King County, Washington. PARTICIPANTS: A total of 1434 study encounters were done in shelter residents and staff, regardless of symptoms. INTERVENTION: 2 strategies were used for SARS-CoV-2 testing: routine surveillance and contact tracing ("surge testing") events. MEASUREMENTS: The primary outcome measure was test positivity rate of SARS-CoV-2 infection at shelters, determined by dividing the number of positive cases by the total number of participant encounters, regardless of symptoms. Sociodemographic, clinical, and virologic variables were assessed as correlates of viral positivity. RESULTS: Among 1434 encounters, 29 (2% [95% CI, 1.4% to 2.9%]) cases of SARS-CoV-2 infection were detected across 5 shelters. Most (n = 21 [72.4%]) were detected during surge testing events rather than routine surveillance, and most (n = 21 [72.4% {CI, 52.8% to 87.3%}]) were asymptomatic at the time of sample collection. Persons who were positive for SARS-CoV-2 were more frequently aged 60 years or older than those without SARS-CoV-2 (44.8% vs. 15.9%). Eighty-six percent of persons with positive test results slept in a communal space rather than in a private or shared room. LIMITATION: Selection bias due to voluntary participation and a relatively small case count. CONCLUSION: Active surveillance and surge testing were used to detect multiple cases of asymptomatic and symptomatic SARS-CoV-2 infection in homeless shelters. The findings suggest an unmet need for routine viral testing outside of clinical settings for homeless populations. PRIMARY FUNDING SOURCE: Gates Ventures.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Ill-Housed Persons , Adolescent , Adult , Child , Contact Tracing , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Population Surveillance , SARS-CoV-2 , Washington/epidemiology
20.
medRxiv ; 2020 Sep 30.
Article in English | MEDLINE | ID: covidwho-835251

ABSTRACT

The rapid spread of SARS-CoV-2 has gravely impacted societies around the world. Outbreaks in different parts of the globe are shaped by repeated introductions of new lineages and subsequent local transmission of those lineages. Here, we sequenced 3940 SARS-CoV-2 viral genomes from Washington State to characterize how the spread of SARS-CoV-2 in Washington State (USA) was shaped by differences in timing of mitigation strategies across counties, as well as by repeated introductions of viral lineages into the state. Additionally, we show that the increase in frequency of a potentially more transmissible viral variant (614G) over time can potentially be explained by regional mobility differences and multiple introductions of 614G, but not the other variant (614D) into the state. At an individual level, we see evidence of higher viral loads in patients infected with the 614G variant. However, using clinical records data, we do not find any evidence that the 614G variant impacts clinical severity or patient outcomes. Overall, this suggests that at least to date, the behavior of individuals has been more important in shaping the course of the pandemic than changes in the virus.

SELECTION OF CITATIONS
SEARCH DETAIL